Accurate assessment of Attention Deficit Hyperactivity Disorder (ADHD) is crucial for the effective treatment of affected individuals. Traditionally, psychometric tests such as the WISC-IV have been utilized to gather evidence and identify patterns or factors contributing to ADHD diagnosis. However, in recent years, the use of machine learning (ML) models in conjunction with post-hoc eXplainable Artificial Intelligence (XAI) techniques has improved our ability to make precise predictions and…